티스토리 뷰
Work/Data Science|Machine;Deep Learning
[책] Applied Machine Learning Explainability Techniques
Insight Miner 2022. 8. 23. 13:32반응형
제목: Applied Machine Learning Explainability Techniques
내용: XAI에 대한 소개
코드: https://github.com/PacktPublishing/Applied-Machine-Learning-Explainability-Techniques
GitHub - PacktPublishing/Applied-Machine-Learning-Explainability-Techniques: Applied Machine Learning Explainability Techniques,
Applied Machine Learning Explainability Techniques, published by Packt - GitHub - PacktPublishing/Applied-Machine-Learning-Explainability-Techniques: Applied Machine Learning Explainability Techniq...
github.com
반응형
'Work > Data Science|Machine;Deep Learning' 카테고리의 다른 글
[paper] Semi-supervised Vision Transformers at Scale (0) | 2022.08.25 |
---|---|
ocrpy: Unified interface to google vision, aws textract, azure, tesseract and other OCR tools (0) | 2022.08.24 |
What Did My AI Learn? How Data Scientists Make Sense of ModelBehavior (0) | 2022.08.22 |
A Benchmarking Toolkit for Time Series Anomaly Detection Algorithms (0) | 2022.08.22 |
다른 도메인에 대한 Transfer learning 적용 (0) | 2022.07.21 |
반응형
공지사항
최근에 올라온 글
최근에 달린 댓글
- Total
- Today
- Yesterday
링크
TAG
- tutorial
- causality
- mask
- learning
- rcnn
- explainability
- transformer
- import
- dowhy
- github
- detection
- TimeSeries
- vision
- Bbox
- export
- 파이썬
- anomaly
- XAI
- Python
- ML
- segmentation
- machine
- 맛집
- error
- bashrc
- Domain
- Semantic
- AI
- 서현
- 제조
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
글 보관함